COVID-19 Boosters: Should You Get One?



erythrocytic cycle of plasmodium :: Article Creator

Plasmodium Falciparum Heat Shock Proteins As Antimalarial Drug Targets: An Update

Our systems have detected unusual traffic activity from your network. Please complete this reCAPTCHA to demonstrate that it's you making the requests and not a robot. If you are having trouble seeing or completing this challenge, this page may help. If you continue to experience issues, you can contact JSTOR support.

Block Reference: #e84aefec-3647-11ef-b1ee-e52da12231ccVID: #IP: 167.71.87.121Date and time: Sat, 29 Jun 2024 18:46:34 GMT

Javascript is disabled

Go back to JSTOR

©2000- ITHAKA. All Rights Reserved. JSTOR®, the JSTOR logo, JPASS®, and ITHAKA® are registered trademarks of ITHAKA.


Genetic Linkage And Association Analyses For Trait Mapping In Plasmodium Falciparum

Levine, N. D. Progress in taxonomy of the Apicomplexan protozoa. J. Protozool. 35, 518–520 (1988).

Article  CAS  PubMed  Google Scholar 

Bruce-Chwatt, L. J. Essential Malariology (Oxford Univ. Press, New York, 1993).

Google Scholar 

Singh, B. Et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 1017–1024 (2004).

Article  PubMed  Google Scholar 

World Health Organization. The World Health Report 2005: Make Every Mother and Child Count. World Health Organization, Geneva. [online], (2005).

Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193, 673–675 (1976). A landmark paper describing the methods for in vitro culture of P. Falciparum.

Article  CAS  PubMed  Google Scholar 

Vanderberg, J. P. & Gwadz, R. W. In Malaria, Volume 2: Pathology, Vector Studies and Culture. (ed. Kreier, J. P.) 153–234 (Academic, New York, 1980).

Book  Google Scholar 

Walliker, D. Et al. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 1661–1666 (1987). Description of the first genetic cross in P. Falciparum.

Article  CAS  PubMed  Google Scholar 

Peterson, D. S., Walliker, D. & Wellems, T. E. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc. Natl Acad. Sci. USA 85, 9114–9118 (1988).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wellems, T. E. Et al. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345, 253–255 (1990).

Article  CAS  PubMed  Google Scholar 

Wellems, T. E., Walker-Jonah, A. & Panton, L. J. Genetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome 7. Proc. Natl Acad. Sci. USA 88, 3382–3386 (1991).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaidya, A. B. Et al. A genetic locus on Plasmodium falciparum chromosome 12 linked to a defect in mosquito infectivity and male gametogenesis. Mol. Biochem. Parasitol. 69, 65–71 (1995).

Article  CAS  PubMed  Google Scholar 

Su, X.-Z., Kirkman, L. A., Fujioka, H. & Wellems, T. E. Complex polymorphisms in an ∼330 kDa protein are linked to chloroquine-resistant P. Falciparum in Southeast Asia and Africa. Cell 91, 593–603 (1997).

Article  CAS  PubMed  Google Scholar 

Wang, P., Read, M., Sims, P. F. G. & Hyde, J. E. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in the dihydropteroate synthase and an additional factor associated with folate utilization. Mol. Microbiol. 23, 979–986 (1997).

Article  CAS  PubMed  Google Scholar 

Su, X.-Z. Et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286, 1351–1353 (1999). Description of the first high-resolution genetic map for P. Falciparum.

Article  CAS  PubMed  Google Scholar 

Fidock, D. A. Et al. Mutations in the P. Falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6, 861–871 (2000). The original description of the determinant of CQ resistance in P. Falciparum.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferdig, M. T. Et al. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol. Microbiol. 52, 985–997 (2004).

Article  CAS  PubMed  Google Scholar 

Wang, P., Nirmalan, N., Wang, Q., Sims, P. F. & Hyde, J. E. Genetic and metabolic analysis of folate salvage in the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 135, 77–87 (2004).

Article  CAS  PubMed  Google Scholar 

Furuya, T. Et al. Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis. Proc. Natl Acad. Sci. USA 102, 16813–16818 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffman, S. L., Subramanian, G. M., Collins, F. H. & Venter, J. C. Plasmodium, human and Anopheles genomics and malaria. Nature 415, 702–709 (2002).

Article  CAS  PubMed  Google Scholar 

Crabb, B. S. Transfection technology and the study of drug resistance in the malaria parasite Plasmodium falciparum. Drug Resist. Updat. 5, 126–130 (2002).

Article  CAS  PubMed  Google Scholar 

Bozdech, Z. Et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, e5 (2003).

Article  PubMed  PubMed Central  Google Scholar 

Le Roch, K. G. Et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003).

Article  CAS  PubMed  Google Scholar 

Yeh, I., Hanekamp, T., Tsoka, S., Karp, P. D. & Altman, R. B. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 14, 917–924 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlton, J., Silva, J. & Hall, N. The genome of model malaria parasites, and comparative genomics. Curr. Issues Mol. Biol. 7, 23–37 (2005).

CAS  PubMed  Google Scholar 

Hall, N. Et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307, 82–86 (2005).

Article  CAS  PubMed  Google Scholar 

LaCount, D. J. Et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438, 103–107 (2005).

Article  CAS  PubMed  Google Scholar 

Stoeckert, C. J. Jr et al. PlasmoDB v5: new looks, new genomes. Trends Parasitol. 22, 543–546 (2006).

Article  CAS  PubMed  Google Scholar 

Winzeler, E. A. Applied systems biology and malaria. Nature Rev. Microbiol. 4, 145–151 (2006).

Article  CAS  Google Scholar 

Walliker, D., Carter, R. & Morgan, S. Genetic recombination in malaria parasites. Nature 232, 561–562 (1971).

Article  CAS  PubMed  Google Scholar 

Carlton, J., Mackinnon, M. & Walliker, D. A chloroquine resistance locus in the rodent malaria parasite Plasmodium chabaudi. Mol. Biochem. Parasitol. 93, 57–72 (1998).

Article  CAS  PubMed  Google Scholar 

Hayton, K., Ranford-Cartwright, L. C. & Walliker, D. Sulfadoxine-pyrimethamine resistance in the rodent malaria parasite Plasmodium chabaudi. Antimicrob. Agents Chemother. 46, 2482–2489 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cravo, P. V. Et al. Genetics of mefloquine resistance in the rodent malaria parasite Plasmodium chabaudi. Antimicrob. Agents Chemother. 47, 709–718 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Culleton, R., Martinelli, A., Hunt, P. & Carter, R. Linkage group selection: rapid gene discovery in malaria parasites. Genome Res. 15, 92–97 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinelli, A. Et al. A genetic approach to the de novo identification of targets of strain-specific immunity in malaria parasites. Proc. Natl Acad. Sci. USA 102, 814–819 (2005). This paper describes application of linkage group selection to identify targets of strain-specific immunity.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Dijk, M. R., Waters, A. P. & Janse, C. J. Stable transfection of malaria parasite blood stages. Science 268, 1358–1362 (1995).

Article  CAS  PubMed  Google Scholar 

de Koning-Ward, T. F., Janse, C. J. & Waters, A. P. The development of genetic tools for dissecting the biology of malaria parasites. Annu. Rev. Microbiol. 54, 157–185 (2000).

Article  CAS  PubMed  Google Scholar 

Balu, B. & Adams, J. H. Advancements in transfection technologies for Plasmodium. Int. J. Parasitol. 37, 1–10 (2007).

Article  CAS  PubMed  Google Scholar 

Carlton, J. M., Hayton, K., Cravo, P. V. & Walliker, D. Of mice and malaria mutants: unravelling the genetics of drug resistance using rodent malaria models. Trends Parasitol. 17, 236–242 (2001).

Article  CAS  PubMed  Google Scholar 

Carter, R., Hunt, P. & Cheesman, S. Linkage group selection — a fast approach to the genetic analysis of malaria parasites. Int. J. Parasitol. 37, 285–293 (2007).

Article  CAS  PubMed  Google Scholar 

Sinden, R. E. & Hartley, R. H. Identification of the meiotic division of malarial parasites. J. Protozool. 32, 742–744 (1985).

Article  CAS  PubMed  Google Scholar 

Babiker, H. A. Et al. Random mating in a natural population of the malarial parasite Plasmodium falciparum. Parasitology 109, 413–421 (1994).

Article  PubMed  Google Scholar 

Paul, R. E. L. Et al. Mating patterns in malaria parasite populations of Papua New Guinea. Science 269, 1709–1711 (1995).

Article  CAS  PubMed  Google Scholar 

Wellems, T. E. & Plowe, C. V. Chloroquine-resistant malaria. J. Infect. Dis. 184, 770–776 (2001).

Article  CAS  PubMed  Google Scholar 

Carter, R. & Mendis, K. N. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15, 564–594 (2002).

Article  PubMed  PubMed Central  Google Scholar 

Chou, A. C., Chevli, R. & Fitch, C. D. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 19, 1543–1549 (1980).

Article  CAS  PubMed  Google Scholar 

Fidock, D. A. Et al. Allelic modification of the cg2 and cg1genes do not alter the chloroquine response of drug-resistant Plasmodium falciparum. Mol. Biochem. Parasitol. 110, 1–10 (2000).

Article  CAS  PubMed  Google Scholar 

Cooper, R. A. Et al. Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol. Pharmacol. 61, 35–42 (2002).

Article  CAS  PubMed  Google Scholar 

Sidhu, A. B., Verdier-Pinard, D. & Fidock, D. A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298, 210–213 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Djimde, A. Et al. A molecular marker for chloroquine-resistant falciparum malaria. N. Engl. J. Med. 344, 257–263 (2001).

Article  CAS  PubMed  Google Scholar 

Wootton, J. C. Et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418, 320–323 (2002). Description of CQ-resistance founder events and subsequent selective sweeps across the major malarious regions of the world.

Article  CAS  PubMed  Google Scholar 

Mehlotra, R. K. Et al. Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with PfCRT polymorphism in Papua New Guinea and South America. Proc. Natl Acad. Sci. USA 98, 12689–12694 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bray, P. G. Et al. PfCRT and the trans-vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX. Mol. Microbiol. 62, 238–251 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper, R. A. Et al. Mutations in transmembrane domains 1, 4 and 9 of the Plasmodium falciparum chloroquine resistance transporter alter susceptibility to chloroquine, quinine and quinidine. Mol. Microbiol. 63, 270–282 (2007).

Article  CAS  PubMed  Google Scholar 

Mu, J. Et al. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol. Microbiol. 49, 977–989 (2003).

Article  CAS  PubMed  Google Scholar 

Wongsrichanalai, C. Et al. In vitro susceptibility of Plasmodium falciparum isolates in Vietnam to artemisinin derivatives and other antimalarials. Acta Trop. 63, 151–158 (1997).

Article  CAS  PubMed  Google Scholar 

Reed, M. B., Saliba, K. J., Caruana, S. R., Kirk, K. & Cowman, A. F. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403, 906–909 (2000).

Article  CAS  PubMed  Google Scholar 

Kidgell, C. Et al. A systematic map of genetic variation in Plasmodium falciparum. PLoS. Pathog. 2, e57 (2006). A primary report of allelic variability in the P. Falciparum genome detected by high-density microarrays.

Article  PubMed  PubMed Central  Google Scholar 

Farrall, M. Quantitative genetic variation: a post-modern view. Hum. Mol. Genet. 13, R1–R7 (2004).

Article  CAS  PubMed  Google Scholar 

Suthram, S., Sittler, T. & Ideker, T. The Plasmodium protein network diverges from those of other eukaryotes. Nature 438, 108–112 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nair, S. Et al. A selective sweep driven by pyrimethamine treatment in Southeast Asian malaria parasites. Mol. Biol. Evol. 20, 1526–1536 (2003).

Article  CAS  PubMed  Google Scholar 

Roper, C. Et al. Antifolate antimalarial resistance in southeast Africa: a population-based analysis. Lancet 361, 1174–1181 (2003).

Article  PubMed  Google Scholar 

Nair, S. Et al. Recurrent gene amplification and soft selective sweeps during evolution of multidrug resistance in malaria parasites. Mol. Biol. Evol. 24, 562–573 (2007).

Article  CAS  PubMed  Google Scholar 

Al-Olayan, E. M., Beetsma, A. L., Butcher, G. A., Sinden, R. E. & Hurd, H. Complete development of mosquito phases of the malaria parasite in vitro. Science 295, 677–679 (2002).

Article  CAS  PubMed  Google Scholar 

Hollingdale, M. R. In In vitro Methods for Parasite Cultivation (eds Taylor, A. E. R. & Baker, J. R.) 180–198 (Academic, New York, 1987).

Google Scholar 

Udomsangpetch, R. Et al. Short-term in vitro culture of field isolates of Plasmodium vivax using umbilical cord blood. Parasitol. Int. 56, 65–69 (2006).

Article  CAS  PubMed  Google Scholar 

Kocken, C. H. Et al. Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies. Infect. Immun. 70, 655–660 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rich, S. M., Licht, M. C., Hudson, R. R. & Ayala, F. J. Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 95, 4425–4430 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Volkman, S. K. Et al. Recent origin of Plasmodium falciparum from a single progenitor. Science 293, 482–484 (2001).

Article  CAS  PubMed  Google Scholar 

Hughes, A. L. & Verra, F. Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proc. Biol. Sci. 268, 1855–1860 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mu, J. Et al. Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature 418, 323–326 (2002).

Article  CAS  PubMed  Google Scholar 

Joy, D. A. Et al. Early origin and recent expansion of Plasmodium falciparum. Science 300, 318–321 (2003).

Article  CAS  PubMed  Google Scholar 

Su, X. Z., Mu, J. & Joy, D. A. The 'Malaria's Eve' hypothesis and the debate concerning the origin of the human malaria parasite Plasmodium falciparum. Microbes. Infect. 5, 891–896 (2003).

Article  PubMed  Google Scholar 

Jeffares, D. C. Et al. Genome variation and evolution of the malaria parasite Plasmodium falciparum. Nature Genet. 39, 120–125 (2007). Description of genome-wide polymorphism within and between species, and evolutionary implications of the findings.

Article  CAS  PubMed  Google Scholar 

Mu, J. Et al. Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome. Nature Genet. 39, 126–130 (2007). Selection signatures from a survey of ∼3,500 predicted genes identify sequences that are likely to be under immune pressure.

Article  CAS  PubMed  Google Scholar 

Volkman, S. K. Et al. A genome-wide map of diversity in Plasmodium falciparum. Nature Genet. 39, 113–119 (2007). SNPs identified by large-scale sequencing reveal genome-wide LD, selection and recombination

Article  CAS  PubMed  Google Scholar 

Hughes, A. L. & Verra, F. Extensive polymorphism and ancient origin of Plasmodium falciparum. Trends Parasitol. 18, 348–351 (2002).

Article  CAS  PubMed  Google Scholar 

Anderson, T. J. Et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol. Biol. Evol. 17, 1467–1482 (2000).

Article  CAS  PubMed  Google Scholar 

Mu, J. Et al. Recombination hotspots and population structure in Plasmodium falciparum. PLoS Biol. 3, e335 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayward, R. E. Et al. Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria. Mol. Microbiol. 35, 6–14 (2000).

Article  CAS  PubMed  Google Scholar 

Llinas, M., Bozdech, Z., Wong, E. D., Adai, A. T. & DeRisi, J. L. Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucleic Acids Res. 34, 1166–1173 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Young, J. A. Et al. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol. Biochem. Parasitol. 143, 67–79 (2005).

Article  CAS  PubMed  Google Scholar 

Mok, B. W. Et al. Comparative transcriptomal analysis of isogenic Plasmodium falciparum clones of distinct antigenic and adhesive phenotypes. Mol. Biochem. Parasitol. 151, 184–192 (2007).

Article  CAS  PubMed  Google Scholar 

Lovegrove, F. E. Et al. Simultaneous host and parasite expression profiling identifies tissue-specific transcriptional programs associated with susceptibility or resistance to experimental cerebral malaria. BMC Genomics 7, 295 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mockler, T. C. Et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1–15 (2005).

Article  CAS  PubMed  Google Scholar 

Price, R. N. Et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364, 438–447 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson, T. J. Et al. Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance? Antimicrob. Agents Chemother. 49, 2180–2188 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hill, W. G., Babiker, H. A., Ranford-Cartwright, L. C. & Walliker, D. Estimation of inbreeding coefficients from genotypic data on multiple alleles, and application to estimation of clonality in malaria parasites. Genet. Res. 65, 53–61 (1995).

Article  CAS  PubMed  Google Scholar 

Walliker, D., Babiker, H. A. & Ranford-Cartwright, L. C. The genetic structure of malaria parasite populations in Malaria: Parasite Biology, Pathogenesis and Protection (ed. Sherman, I. W.) 235–255 (ASM, Washington DC, 1998).

Google Scholar 

Conway, D. J. Et al. High recombination rate in natural populations of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 96, 4506–4511 (1999). Description and discussion of high recombination frequencies in parasite populations of five African countries.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laserson, K. F. Et al. Genetic characterization of an epidemic of Plasmodium falciparum malaria among Yanomami Amerindians. J. Infect. Dis. 180, 2081–2085 (1999).

Article  CAS  PubMed  Google Scholar 

Florens, L. Et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002).

Article  CAS  PubMed  Google Scholar 

Lasonder, E. Et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537–542 (2002).

Article  CAS  PubMed  Google Scholar 

Khan, S. M. Et al. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121, 675–687 (2005).

Article  CAS  PubMed  Google Scholar 

Sam-Yellowe, T. Y. Et al. Proteome analysis of rhoptry-enriched fractions isolated from Plasmodium merozoites. J. Proteome. Res. 3, 995–1001 (2004).

Article  CAS  PubMed  Google Scholar 

Ginsburg, H. Progress in in silico functional genomics: the malaria Metabolic Pathways database. Trends Parasitol. 22, 238–240 (2006).

Article  CAS  PubMed  Google Scholar 

Sinden, R. E. A proteomic analysis of malaria biology: integration of old literature and new technologies. Int. J. Parasitol. 34, 1441–1450 (2004).

Article  CAS  PubMed  Google Scholar 

Carlton, J. M. Et al. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419, 512–519 (2002).

Article  CAS  PubMed  Google Scholar 

Aravind, L., Iyer, L. M., Wellems, T. E. & Miller, L. H. Plasmodium biology: genomic gleanings. Cell 115, 771–785 (2003).

Article  CAS  PubMed  Google Scholar 

Trager, W. & Williams, J. Extracellular (axenic) development in vitro of the erythrocytic cycle of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 89, 5351–5355 (1992).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, Y., Sifri, C. D., Lei, H. H., Su, X. Z. & Wellems, T. E. Transfection of Plasmodium falciparum within human red blood cells. Proc. Natl Acad. Sci. USA 92, 973–977 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duraisingh, M. T., Triglia, T. & Cowman, A. F. Negative selection of Plasmodium falciparum reveals targeted gene deletion by double crossover recombination. Int. J. Parasitol. 32, 81–89 (2002).

Article  CAS  PubMed  Google Scholar 

Deitsch, K., Driskill, C. & Wellems, T. Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 29, 850–853 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carvalho, T. G. & Menard, R. Manipulating the Plasmodium genome. Curr. Issues Mol. Biol. 7, 39–55 (2005).

CAS  PubMed  Google Scholar 

Meissner, M. Et al. Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood stages using Toxoplasma gondii transactivators. Proc. Natl Acad. Sci. USA 102, 2980–2985 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mamoun, C. B., Gluzman, I. Y., Goyard, S., Beverley, S. M. & Goldberg, D. E. A set of independent selectable markers for transfection of the human malaria parasite Plasmodium falciparum. Proc. Natl Acad. Sci. USA 96, 8716–8720 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desjardins, R. E., Canfield, C. J., Haynes, J. D. & Chulay, J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated technique. Antimicrobial Agents Chemother. 16, 710–718 (1979).

Article  CAS  Google Scholar 

White, N. J. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob. Agents Chemother. 41, 1413–1422 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. Nature 415, 673–679 (2002).

Article  CAS  PubMed  Google Scholar 

Gaur, D., Mayer, D. C. & Miller, L. H. Parasite ligand-host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int. J. Parasitol. 34, 1413–1429 (2004).

Article  CAS  PubMed  Google Scholar 

Cowman, A. F. & Crabb, B. S. Invasion of red blood cells by malaria parasites. Cell 124, 755–766 (2006).

Article  CAS  PubMed  Google Scholar 

Miller, L. H., Mason, S. J., Dvorak, J. A., McGinniss, M. H. & Rothman, I. K. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189, 561–563 (1975).

Article  CAS  PubMed  Google Scholar 

al-Khedery, B., Barnwell, J. W. & Galinski, M. R. Antigenic variation in malaria: a 3′ genomic alteration associated with the expression of a P. Knowlesi variant antigen. Mol. Cell 3, 131–141 (1999).

Article  CAS  PubMed  Google Scholar 

Dzikowski, R., Frank, M. & Deitsch, K. Mutually exclusive expression of virulence genes by malaria parasites is regulated independently of antigen production. PLoS. Pathog. 2, e22 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaestli, M. Et al. Virulence of malaria is associated with differential expression of Plasmodium falciparum var gene subgroups in a case-control study. J. Infect. Dis. 193, 1567–1574 (2006).

Article  CAS  PubMed  Google Scholar 

Trimnell, A. R. Et al. Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. Mol. Biochem. Parasitol. 148, 169–180 (2006).

Article  CAS  PubMed  Google Scholar 

Shelburne, S. A. & Musser, J. M. Virulence gene expression in vivo. Curr. Opin. Microbiol. 7, 283–289 (2004).

Article  CAS  PubMed  Google Scholar 

Shortt, H. E., Fairley, N. H., Covell, G., Shute, P. G. & Garnham, P. C. C. The pre-erythrocytic stage of Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg. 44, 405–419 (1951).

Article  CAS  PubMed  Google Scholar 

Shi, Q. Et al. Alteration in host cell tropism limits the efficacy of immunization with a surface protein of malaria merozoites. Infect. Immun. 73, 6363–6371 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 


Eukaryotes And Cell Cycle

In order to move from one phase of its life cycle to the next, a cell must pass through numerous checkpoints. At each checkpoint, specialized proteins determine whether the necessary conditions exist. If so, the cell is free to enter the next phase. If not, progression through the cell cycle is halted. Errors in these checkpoints can have catastrophic consequences, including cell death or the unrestrained growth that is cancer.

Each part of the cell cycle features its own unique checkpoints. For example, during G1, the cell passes through a critical checkpoint that ensures environmental conditions (including signals from other cells) are favorable for replication. If conditions are not favorable, the cell may enter a resting state known as G0. Some cells remain in G0 for the entire lifetime of the organism in which they reside. For instance, the neurons and skeletal muscle cells of mammals are typically in G0.

Another important checkpoint takes place later in the cell cycle, just before a cell moves from G2 to mitosis. Here, a number of proteins scrutinize the cell's DNA, making sure it is structurally intact and properly replicated. The cell may pause at this point to allow time for DNA repair, if necessary.

Yet another critical cell cycle checkpoint takes place mid-mitosis. This check determines whether the chromosomes in the cell have properly attached to the spindle, or the network of microtubules that will separate them during cell division. This step decreases the possibility that the resulting daughter cells will have unbalanced numbers of chromosomes — a condition called aneuploidy.






Comments

Popular Posts

UKHSA Advisory Board: preparedness for infectious disease threats